
I
d
d

R
D

a

A
R
R
A
A

K
R
P
M
G
M
e

1

p
A
d
c
u
r
c
t
c
d
p
a
d
P
i
b
b
r
o

r

0
d

Journal of Chromatography A, 1233 (2012) 116– 125

Contents lists available at SciVerse ScienceDirect

Journal  of  Chromatography  A

j our na l ho me  p ag e: www.elsev ier .com/ locate /chroma

nvestigation  of  retention  behavior  of  polychlorinated  biphenyl  congeners  on  18
ifferent  HRGC  columns  using  molecular  surface  average  local  ionization  energy
escriptors

aouf  Ghavami ∗,  Bakhtyar  Sepehri
epartment of Chemistry, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran

 r  t  i  c  l  e  i n  f  o

rticle history:
eceived 7 December 2011
eceived in revised form 16 January 2012
ccepted 17 January 2012
vailable online 11 February 2012

a  b  s  t  r  a  c  t

In  this  paper,  based  on  the  general  interaction  properties  function  (GIPF)  family  descriptors  computed
at  the  B3LYP/6-31G*  level  in  Gaussian98  software,  a  significant  quantitative  structure–retention  rela-
tionship  (QSRR)  models  for  the  high  resolution  gas  chromatographic  relative  retention  time  (HRGC-RRT)
of all  PCB  congeners  on 18  different  HRGC  capillary  columns  were  constructed  by  using multiple  linear
regression  (MLR)  analysis,  following  the  guidelines  for development  and  validation  of  QSRR  models.  By
means of  the  elimination  selection  stepwise  regression  algorithms,  the  molecular  surface  average  local
eywords:
elative retention time
olychlorinated biphenyl
olecular surface electrostatic potentials
IPF approach
olecular surface average local ionization

ionization  energy  was  selected  as  one-parameter  univariate  linear  regression  to  develop  a QSRR  model
for prediction  of GC-RRT  of  PCBs  on  each  stationary  phase.  The  accuracy  of  all  developed  models  was
confirmed  using  different  types  of  internal  and  external  procedures.  A successful  interpretation  of  the
complex  relationship  between  HRGC-RRTs  of  PCBs  and  the  chemical  structures  was  achieved  by  QSRR.

© 2012 Elsevier B.V. All rights reserved.

nergy

. Introduction

Polychlorinated biphenyls (PCBs) are a class of biphenyl com-
ounds with one to ten hydrogen atoms replaced by chlorine.
t room temperature, they range in physical state from light- to
ark-yellow oily liquids to white crystalline solids and hard non-
rystalline resins [1,2]. PCBs are produced commercially, depending
pon the number of chlorines and their location on the biphenyl
ings, resulting in 209 possible PCB congeners [3]. The name of a
ongener specifies the total number of chlorine substitutions and
he position of chlorine. Fig. 1 shows the conventional nomen-
lature, with the 1 and 6 positions closest to the biphenyl bond
escribed as ortho (carbon atoms 2, 2′, 6, or 6′), those opposite called
ara (carbon atoms 4 or 4′), and the remainder called meta (carbon
toms 3, 3′, 5, or 5′). The number and position of the chlorine atoms
etermine both the physical and the biological properties of each
CBs [4]. PCBs with fewer chlorine atoms tend to be more soluble
n water, more volatile, and more easily metabolized. Larger num-
ers of chlorine atoms are associated with increased resistance to

iodegradation, which can increase bioaccumulation in the envi-
onment. PCBs are practically insoluble in water, but soluble in
rganic solvents and fats. They are very stable and persistent in the

∗ Corresponding author. Tel.: +98 871 6624133; fax: +98 871 6624133.
E-mail addresses: r.ghavami@uok.ac.ir,

ghavami2000@yahoo.com (R. Ghavami).

021-9673/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2012.01.047
environment [5].  PCBs were used widely in electrical equipment
like capacitors and transformers. They also were used in hydraulic
fluids, heat transfer fluids, lubricants, and plasticizers. PCBs are per-
sistent environmental pollutants that elicit a number of adverse
health effects including teratogenesis, neurotoxicity, immunotoxi-
city, reproductive toxicity, endocrine disruption and carcinogenesis
[6]. The major emission of PCBs in the environment has been related
to the use of PCB mixtures in electrical equipment, but coal com-
bustion, steel melting and waste incineration are also among the
possible sources. Although PCBs were banned between the 1970s
and 1980s in most industrialized countries because of their alleged
carcinogenicity, they are still present in the environment. Depend-
ing on the structural characteristics, such as the specific pattern
of chlorine substitution in para and meta or ortho positions, PCBs
are classified as non-ortho-substituted dioxin-like (DL) or ortho-
substituted non-dioxin-like (NDL) congeners. DL-PCBs have high
affinity for the aryl hydrocarbon receptor (AhR), a ligand-activated
transcription factor that controls the expression of cytochrome
P450 1A (CYP1A) genes and are regarded to be highly toxic, similar
to those of the toxic effects of TSDD (2,3,7,8-tetrachlorodibenzo-
p-dioxin). NDL-PCB congeners are generally considered less toxic,
but the nervous system has appeared to be one of their most sen-
sitive targets [4,7–9].  Association between elevated exposure to

PCB mixtures and alterations in liver enzymes, hepatomegaly, and
dermatological effects such as rashes and acne has been reported
[10].

dx.doi.org/10.1016/j.chroma.2012.01.047
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:r.ghavami@uok.ac.ir
mailto:rghavami2000@yahoo.com
dx.doi.org/10.1016/j.chroma.2012.01.047
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ig. 1. Chemical structure of the PCB molecule. The 10 positions are numbered 2–6
n  one ring and 2′–6′ on the second ring. Chlorines can be substituted for hydrogen
t  10 possible sites on the biphenyl rings.

Due to PCBs’ complex composition, many researchers have
lso placed emphasis on the identification of the individual PCB
ongeners [11,12].  Presently, all 209 PCB congeners have been
ommercially synthesized and are available for use as standards,
nd because of advances in high resolution gas chromatography
HRGC), it is possible to determine most of the individual PCB con-
eners in the environmental samples. However, separation and
haracterization of all 209 PCB congeners is still an extremely diffi-
ult (if not impossible) task that attracts on-going research focus
n this field [13]. One of the most successful approaches to the
rediction of physicochemical and biological properties of organic
olecules, starting only from molecular structure information,

s quantitative structure–property/activity relationships modeling
QSPRs/QSARs) [14]. QSPRs/QSARs are mathematical models that
ttempt to correlate the molecular structure of compounds and
heir biological, chemical, and physical properties. Among the most
xtensively studied properties are the chromatographic ones. It is
onsidered that the same basic intermolecular interactions deter-
ine the behavior of chemical compounds in both biological and

hromatographic environments [15]. Retention in chromatography
s the result of a competitive distribution process of the solute
etween mobile and stationary phases, in which, the partition-

ng of the solute between these phases is largely determined by
he molecular structure [16]. Predicting chromatographic behav-
or from molecular structure of solutes resulted in the quantitative
tructure–retention relationships (QSRRs) methodology. QSRRs are
tatistically derived relationships between the chromatographic
arameters determined for a representative series of analytes in
iven separation systems and the molecular descriptors accounting
or the structural differences among the investigated analytes [17].
uch relationships may  provide insight into the molecular mech-
nism of separation in a given chromatographic system, generate
nowledge about the various interactions taking place between the
olute and the stationary phase, evaluate physicochemical prop-
rties of analytes and identify the most informative structural
escriptors. Due to the need to control the PCBs level in the envi-
onment, the analytical methods for their analysis are currently
ased on their separation by GC [18] using on capillary columns
ith different polarities [19,20] and specific detectors such as the
ame ionization detector (FID) [21], the electron-capture detector
ECD) [22,23] and mass spectrometry (MS) [24,25].  The HRGC-RRT
n a capillary column with detection by ECD is a unique charac-
eristic of the PCBs and can be used for the identification purpose.
espite the broad range of GC stationary phases available, none
an separate all PCBs from each other. Various techniques have
een used based on the combination of commercially available GC
olumns to improve the separation efficiency of PCBs [26–29].  At
resent, a database of RRTs and coelutions for all 209 congeners
n 20 different stationary phases with MS  or ECD detection has
een reported [12,30]. In the past, several attempts have been made
o build QSRR models on the prediction of RRT for PCBs on dif-
erent stationary phases [16,31–36].  Hasan and Jurs [32] used the

ve-variable regression equation for prediction of GC-RRT of 209
CBs with R2 = 0.997 and standard deviation of 0.017. Liu et al.
33] used the five-variable regression equation with R2 = 0.9928
nd the root mean square errors of 0.0152 based on molecular
ogr. A 1233 (2012) 116– 125 117

electronegativity distance vector (MEDV) descriptors to correlate
with the GC-RRTs of 209 PCB congeners on the SE-54 stationary
phase. Ren et al. [35] using CODESSA software package and prin-
cipal component analyzed (PCA) presented a QSRR study for the
GC–GC–TOFMS (time-flight mass spectrometry) chromatographic
relative retention time of 209 PCB congeners. PCA was  used to
recognize groups of samples with similar behavior and assist the
separation of the data into training and test sets. Jäntschi et al. [36]
reported the use of a molecular descriptors family (MDF) in QSRR
modeling to predict the chromatographic relative retention times
of 209 PCBs on a capillary column of SE-54.

In two  previous researches, we  create QSRR models on 18 sta-
tionary phases using Dragon descriptors and number of chlorine
atoms in different positions on two phenyl rings as descriptors
[37,38]. These QSRR models can detect the best column for sep-
aration of PCBs but recognition of separation mechanism is not
easy because interpretation of these descriptors is problem. The
object of the present investigation, was  to find QSRR models, for
try to solve this problem and with the best predictive and explana-
tory performance, for HRGC-RRTs of 209 PCBs congener’s values on
18 stationary phases by using molecular descriptors derived from
molecular surface electrostatic potentials and average local ion-
ization energy. Retention is a phenomenon primarily dependent
on the interactions between the solute and the stationary-phase
molecules such as induction force, dispersion force, and hydrogen
bond that related to the topological structures, geometric and elec-
tronic environments of the solute [39]. It has long been recognized
that non-covalent interactions are predominantly electrostatic in
nature. Politzer et al. have shown that a variety of condensed phase
macroscopic properties that depend on non-covalent interactions
can be expressed analytically in terms of statistically defined quan-
tities that characterize molecular surface electrostatic potentials
and average local ionization energy and named their models, gen-
eral interaction properties function (GIPF), so we used these family
descriptors to predict retention time of PCBs [40–43].

2. Materials and methods

2.1. Retention time of PCBs

The observed high resolution gas chromatographic relative
retention times (HRGC-RRTs) of 209 PCBs on eighteen different
stationary phases, 30m DB1, 30m SPB-Octyl, 60m SPB-Octyl, 100m
CP-Sil5-C18, 30m DB5-MS, 60m RTX-5, 50m CP-Sil-13, 30m SPB-20,
30m HP-35, 60m RTX-35, 30m DB-17, 60m HP-1301, 30m DP-XLB,
30m DB-35-MS, 50m HT-8, 30m Apiezon L, 30m CNBP#2, 48m 007-
23, reported by Frame [12,30] served as experimental data in this
study and the HRGC-RRTs designed as a dependent variables. A
complete list of the names and corresponding experimental RRT
values of PCBs on each stationary phase has been categorized in
Table S1 of the supplementary data.

2.2. Computer hardware and software

All calculations were run on an 2.5 GHz Intel® CoreTM2 Quad Q
8300 CPU with 2 GB of RAM using all four available cores under
Windows XP operating system. The ISIS/Draw version 2.3 software
was  used for drawing the molecular structures [44]. Molecular
modeling and geometry optimization were employed by Hyper-
Chem (version 7.1, HyperCube, Inc.) [45]. Gaussian98 program [46]

was  operated to optimize the molecular structure. The structures
were optimized by the B3LYP method of density functional theory
(DFT) at the level of 6-31G*. SPSS software (version 16.0, SPSS, Inc.)
http://www.spss.com/ was  used for elimination selection stepwise

http://www.spss.com/
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LR  analysis and other calculations were performed in the MATLAB
version 7.0, Math Works, Inc.) environment.

.3. Molecular descriptors generation and calculation

The selection of appropriate descriptors that are significantly
elated to the property of interest is very important for predictive
SRR models. The descriptors can be chosen using domain knowl-
dge about the examined property, or the mathematical methods
or the selection of descriptors can be applied. Dorofeeva et al. in
005 demonstrated torsion angle between two phenyl rings in PCBs
epend on existence chlorine atom in ortho-positions and chlorine
tom in other positions have no significant effect on this angle.
or PCBs with 1, 2, 3, and 4 chlorine in ortho position torsion angle
etween two phenyl rings in PCBs is near to 55.8–59.3◦, 83.8–88.9◦,
0.5–91.1◦ and 90.0–90.4◦, respectively [47]. So we draw phenyl
ings in PCBs with chlorine atoms in ortho position as orthogonal in
yperChem software and pre-optimized each molecule in it using
M1 method [45] semi-empirical theory level as prior step. Then
e used the density functional theory (DFT) B3LYP/6-31G* func-

ional/basis set combination as implemented in the Gaussian98
oftware package to re-optimize the molecular geometries of 209
CBs and to compute the electrostatic potential V(r) on the molecu-
ar surfaces defined by the 0.001 au contour of the electron density
(r) [48]. Force constants and frequencies were considered to be
ure that geometry is at minimum. The electrostatic potential Vs(r)
hat is created in the space around a molecule by its nuclei and
lectrons is calculated by Eq. (1):

s(r) =
∑

A

zA

|RA − r| −
∫

�(r′)dr′

|r′ − r| (1)

here ZA is the charge on nucleus A, located at RA. The first term
n the right side of Eq. (1) is the nuclear contribution to V(r) and is
ositive, the second term is due to the electrons and is accordingly
egative [41,48].

The average local ionization energy, Ī(r), is defined by Eq. (2):

(r) =
∑

i�i(r)|εi|
�(r)

(2)

i(r) is the electronic density of the molecular orbital at the point
, εi is its orbital energy and �(r) is the electronic density function.

We interpret Ī(r) as the energy required, on average, to remove
n electron from a point r in the space of an atom or molecule
49,50]. Vs(r) is effective for non-covalent interactions, which are
argely electrostatic in nature, while Īs(r) is more suitable when
here is transfer of charge (electron pair donor–electron pair accep-
or interaction) that is one of forces responsible for separation of
ompounds in chromatography [32,49,51].  It might seem that Vs(r)
ould also predict sites for electrophilic and nucleophilic bond-
orming attack, by means of its most negative and positive regions.
owever Vs(r) is not consistently reliable in this respect, because

he regions of most negative Vs(r) do not always correspond to the
ites where the most reactive electrons are located. For example,
he most negative Vs(r) in benzene derivatives such as aniline, phe-
ol, fluoro- and chlorobenzene, and nitrobenzene are associated
ith the substituents, whereas electrophilic reaction occurs on the

ings. In contrast, Īs(r) correctly predicts the ortho/para- or meta
irecting effects of the substituents, as well as their activation or
eactivation of the ring [49].

Politzer et al. demonstrated general interaction properties func-

ion (GIPF) can be summarized as the following equation [41,42]:

roperty = f (Vmv, Atot
s , A+

s , A−
s , Vs,max, Vs,min, V̄s, V̄+

s , V̄−
s , �tot, ı2

tot,

ı2
+, ı2

−, v, Īs,max, Īs,min, Īs, ı2
Is

, �Īs
) (3)
ogr. A 1233 (2012) 116– 125

In the present investigation, then we used the WFA  statistical analy-
sis program to compute GIPF descriptors using the produced CUBE
file with Gaussian98 software package [49]. In Eq. (3),  Vmv is the
molecular volume and Atot

s , A+
s , A−

s are total surface area and the
surface area over which Vs(r) is positive and negative, respectively.
Politzer et al. showed molecular volume related to polarizabil-
ity of molecule so they used this descriptor in GIPF approach
[52,53]. Vs,max,Vs,min, respectively are the maxima and minima of
electrostatic potential on the molecular surface and V̄s, V̄+

s and V̄−
s ,

respectively are the overall average potentials and the average of
positive and negative potentials and computed as:

V̄s = 1
t

t∑
i=1

Vs(ri), V̄+
s = 1

m

m∑
j=1

V+
s (rj), V̄−

s = 1
n

n∑
k=1

V−
s (rk) (4)

�tot is the average deviation of overall potentials and computed as:

� = 1
t

t∑
i=1

|Vs(ri) − V̄s| (5)

� interpreted as an indicator of internal charge separation, which
is present even in molecules having zero dipole moment due to
symmetry, e.g. para-dinitrobenzene and boron trifluoride.

ı2
tot , ı2+, and ı2− are total, positive, and negative variances of elec-

trostatic potentials, respectively and computed as:

ı2
tot = ı2

+ + ı2
− = 1

m

m∑
j=1

[V+
s (rj) − V̄+

s ]
2 + 1

n

n∑
k=1

[V−
s (rk − V̄−

s )]

2

(6)

v is electrostatic balance parameter and computed as [53]:

v = ı2+ı2−
[ı2+ + ı2−]

2
(7)

In these summations, t is the total number of points on the surface
grid, m and n are the numbers of points at which V(r) is positive
and negative, respectively [49]. The features of Ī(r) could be char-
acterized analogously to those of V(r) – its extrema Īs,max, Īs,min, its

average magnitude Is, average deviation (�Īs
), and variance (ı2

Is
) –

keeping in mind that Ī(r) only has positive values [41,49,54,55].

3. Results and discussion

3.1. Selection descriptors and models developing

The calculated GIPF family descriptors are comprised of 15 sur-
face electrostatic potential, 5 average local ionization energy and
16 combinations between them for a total of 36 descriptors, which
were collected in a data matrix (D) with dimensions (m × n), where
m is the number of molecules and n is the number of descriptors.
At the beginning, in order to minimize the information overlap
in descriptors and to reduce the number of descriptors required
in regression equation, the concept of non-redundant descriptors
(NRD) [56] was used in our study. That is, when two  descriptors
are correlated by a linear correlation coefficient value >0.85, both
descriptors are correlated with the dependent variables, the better
correlation is used for the actual analysis, leaving out the descrip-
tors showing a lower correlation. This objective-based feature
selection left reduced and predictive descriptors for the studied
compounds. By using these criteria, 21 out of 36 original descrip-
tors were eliminated. These descriptors are not correlating with
each other as revealed from the correlation matrix presented in

Table S2 of the supplementary data. In GIPF approach, properties
of molecule have relationship with few numbers of descriptors;
therefore a variable reduction technique is needed. In this study the
most important variables are selected by an elimination stepwise
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election procedure, which combines the forward selection and
ackward elimination approaches. This procedure considers first
he descriptive variable most highly correlated with the response. If
he inclusion of this variable results in a significant improvement of
he regression model, evaluated with an overall F-test, it is retained
nd the selection continues. In a next step the variable that gives
he largest significant decrease of the regression sum of squares,
valuated with a partial F-test, is added. After each forward selec-
ion step a backward elimination step is performed. In this step

 partial F-test for the variables, already in the equation, is car-
ied out. If a variable is no longer contributing significantly to the
egression model, it is removed. The procedure stops at the moment
hat no variables fulfill the requirements anymore to be removed or
ntered. After this selection procedure classical MLR  can be applied
n the retained variables to build a predictive model [31,57]. An
LR  model assumes that there is a linear relationship between the
olecular descriptors of a compound, which is usually expressed

s a feature vector x (with each descriptor as a component of this
ector), and its target property, y. An MLR  model can be described
sing the following equation:

 = ˇ0 + ˇ1X1 + ˇ2X2 + ˇ3X3+, · · ·,  +ˇkXk + ε (8)

here {X1, . . .,  Xk} are molecular descriptors, ˇ0 is the regression
odel constant, ˇ1 to ˇk are the coefficients corresponding to the

escriptors X1 to Xk and y is dependent variable. The values for ˇ0
o ˇk are chosen by minimizing the sum of squares of the vertical
istances of the points from the hyperplane so as to give the best
rediction of y from X. Regression coefficients represent the inde-
endent contributions of each calculated molecular descriptor. In
atrix notation, we will write the MLR  model is defined in Eq. (9)

s:

 = Xb + e (9)

here X(n×k) is of full column rank, including a column of 1s for
he intercept if the intercept is included in the mean function y.

e will further assume that we have selected a parameterization
or the y so that X has full column rank, meaning that the inverse

XTX)−1 exists; this is not an important limitation on regression

odels because we can always delete terms from the y, or equiv-
lently delete columns from X, until we have full rank. The k × 1
ector b is the unknown parameter vector. The vector e consists

able 1
SRR models and statistical parameters of GC-RRT values versus (52 + 180) for the total s

St. ph. Univariate models of the training sets R2 RMSE 

S1 RRT = −23.1934(±0.3368) + 2.1015(±0.0299) Is 0.9597 0.0304 

S4  RRT = −20.5633(±0.2452) + 1.8683(±0.0218) Is 0.9726 0.0221 

S6  RRT = −24.1530(±0.2815) + 2.1866(±0.0250) Is 0.9736 0.0254 

S8  RRT = −23.6704(±0.2903) + 2.1438(±0.0258) Is 0.9709 0.0262 

S10 RRT = −15.4163(±0.1502) + 1.4151(±0.0133) Is 0.9819 0.0135 

S11  RRT = −21.1968(±0.2254) + 1.9247(±0.0200) Is 0.9781 0.0203 

S12  RRT = −21.6402(±0.2521) + 1.9641(±0.0224) Is 0.9738 0.0227 

S13  RRT = −18.0583(±0.2028) + 1.6465(±0.0180) Is 0.9758 0.0183 

S14 RRT = −22.3062(±0.3280) + 2.0232(±0.0291) Is 0.9588 0.0296 

S15  RRT = −19.0572(±0.2297) + 1.7352(±0.0204) Is 0.9723 0.0207 

S16  RRT = −14.3339(±0.1835) + 1.3162(±0.0163) Is 0.9692 0.0165 

S17  RRT = −18.9243(±0.2421) + 1.7231(±0.0215) Is 0.9687 0.0218 

S20 RRT = −14.8553(±0.1617) + 1.3651(±0.0144) Is 0.9776 0.0146 

S21  RRT = −13.6184(±0.1628) + 1.2525(±0.0145) Is 0.9731 0.0147 

S22  RRT = −17.3659(±0.2174) + 1.5849(±0.0193) Is 0.9702 0.0196 

S24  RRT = −24.8279(±0.3730) + 2.2463(±0.0331) Is 0.9569 0.0336 

S26 RRT = −13.2136(±0.2363) + 1.2166(±0.0210) Is 0.9419 0.0213 

S27 RRT = −19.8432(±0.5476) + 1.8041(±0.0487) Is 0.8691 0.0494 
ogr. A 1233 (2012) 116– 125 119

of unobservable errors that we assume are equally variable and
uncorrelated, unless stated otherwise. In appropriate Eq. (9),  the
least squares solution estimate b by b̂ = (XT X)

−1
XT y, and the fitted

values y corresponding to the experimental RRTs are then given by:

ŷ = Xb̂ = X(XT X)
−1

XT y = Hy (10)

where H is the n × n matrix defined by H = X(XT X)
−1

XT , which is
called the hat matrix because it transforms the vector of experi-
mental responses y into the vector of fitted responses ŷ. The vector
of residuals ê is defined by ê = y − ŷ = y − Xb̂ = y − X(XT X)

−1
XT y =

(I − H)y.
The advantages of MLR  are that it is simple to use and the

derived models are easy to interpret. The sign of the coefficients
ˇ0 to ˇk shows whether the molecular descriptors contribute pos-
itively or negatively to the target property and their magnitudes
indicate the relative importance of the descriptors to the target
property. However, the molecular descriptors should be mathe-
matically independent (orthogonal) of one another and the number
of compounds in the training set should exceed the number of
molecular descriptors by at least a factor of 4 [58]. The reduced
set of descriptors, remaining as consequence of previous steps
implementation, was used to established best QSRR models by
simple and multiple linear regressions, depending on the number
of terms in model. After stepwise MLR  calculation, we  can model
relative retention times of 209 PCBs with one descriptor that is
common in all 18 column stationary phases. The resulted QSRR
models of 209 PCBs with the exception of system 15 which con-
tains 208 PCBs with selected four descriptors obtained for each
stationary phase are given in Table 1. The value after the sym-
bol “±” in the parenthesis is the standard deviation related to the
regression coefficient. The qualities of the models derived from
various subsets are evaluated using some statistics, such as the
calibration squared correlation coefficients (R2), root-mean-square
error (RMSE), relative error of prediction (REP) and Fisher statistic
ratio (F) are included in Table 1 for the best fitted equations. From
Table 1, it can be seen, the predicted correlation coefficients (R2)

over 0.9819 with the exception of system 27 (R2 = 0.8691) and the
RMSE and REP below 0.0336 and 7.4217, respectively; except for
system 27 (RMSE = 0.0494, REP = 10.7105) indicated that the best
univariate linear regression models have good statistical qualities

ets (n = 209) of PCB congeners on eighteen GC capillary columns.

REP F R2
CV RMSECV Rmax RCV,max

6.6294 4930 0.9583 0.0309 0.0783 0.0599

4.7743 7350 0.9719 0.0224 0.0378 0.0198

5.5623 7640 0.9729 0.0257 0.0632 0.0439

5.7269 6910 0.9702 0.0265 0.0752 0.0568

2.6567 11,200 0.9816 0.0137 0.0713 0.0532

4.3703 9230 0.9776 0.0206 0.0411 0.0231

4.8880 7690 0.9732 0.0230 0.0650 0.0460

3.8762 8350 0.9754 0.0185 0.0328 0.0149

4.2389 4820 0.9577 0.0300 0.0266 0.0062

4.3886 7230 0.9718 0.0209 0.0358 0.0167

3.4508 6520 0.9687 0.0167 0.0307 0.0128

4.6654 6420 0.968 0.0221 0.0503 0.0321

2.8698 9020 0.9772 0.0147 0.0356 0.0167

3.0709 7490 0.9727 0.0148 0.0312 0.0119

4.1632 6730 0.9696 0.0198 0.0535 0.0354

7.4217 4590 0.9558 0.0341 0.0460 0.0277

4.4579 3360 0.9409 0.0215 0.0248 0.0076

10.7105 1370 0.8665 0.0499 0.0334 0.0154
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Fig. 2. (A) Calculated B3LYP/6-31G* ionization energy on molecular surface of 2biph. Ionization ranges in eV/mol: red, more than 12.9415; yellow, between 12.9415 and
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1.6779; green, between 11.6779 and 10.4143; blue, smaller than 10.4143, (B) ca
otential ranges in kcal/mol: red, more than 11.8356; yellow, between 11.8356 an

nterpretation of the references to color in this figure legend, the reader is referred 

ith low prediction error and demonstrated an excellent predic-
ive power of the obtained QSRR models. This descriptor is average

f average local ionization energy, Is, also each local ionization
nergy descriptor (average deviation �Īs

, variance (ı2
Is

), minimum

Īs,min) of ionization energy) has high correlation (R2 ≥ 0.79) with
his descriptor alone. As mentioned above local ionization energy is
nergy required, on average, to remove an electron from a point r in
he space of an atom or molecule. This indicates interaction respon-
ible for separation is charge transfer interaction that is because of
igh electron density on phenyl rings in PCBs (Figs. 2A and 3A)
41]. Charge transfer interaction (electron pair donor–electron pair
cceptor interaction) is one of forces responsible for separation of
ompounds in chromatography. This interaction takes place, when

 place exists with high electron density (Figs. 2B and 3B)  (such as
ouble bond or phenyl ring) and other with low electron density
positive charge) that withdraw electron cloud toward itself [39].
xamples of these interactions are C H· · ·�, O H· · ·� interaction.
or example C H· · ·� interaction was first proposed by Nishio and
o-workers to explain the preference of conformations in which
ulky alkyl and phenyl groups had close contact [59]. Statistical
nalysis of the crystal structure database indicates that the short
ontact of the C H bond and the � system is observed in large
umbers of organic crystals [61 and references therein]. In the pre-
eding paper [38], we demonstrated retention time of PCBs depend
n position and number of chlorine atom on phenyl ring in PCBs.
here is high dependency between averages of molecular surface
verage local ionization and number and position of chlorine atoms
n PCBs:

s = 11.0541(±0.0018) + 0.0277(±0.0005)no. o-Cl

+ 0.0463(±0.0005)no. m-Cl + 0.0514(±0.0008)no. p-Cl
R2 = 0.9857, R2
CV = 0.9850, RMSE = 0.0085, F = 4696.7 (11)

here no. o-Cl, no. m-Cl and no. p-Cl are number of chlorine
toms on ortho, meta and para position, respectively. This research

ig. 3. (A) Calculated B3LYP/6-31G* ionization energy on molecular surface of 188biph. I
2.0948;  green, between 12.0948 and 11.1394; blue, smaller than 11.1394, (B) calculate
otential ranges in kcal/mol: red, more than 11.8356; yellow, between 11.8356 and 3.07

nterpretation of the references to color in this figure legend, the reader is referred to the
ed B3LYP/6-31G* electrostatic potential molecular surface of 2biph. Electrostatic
94; green, between 3.0794 and −5.6769; blue, more negative than −5.6769. (For

 web version of the article.)

indicates Is can play role of these three descriptors in prediction
retention time of PCBs.

3.2. Model prediction-validation

Model validation is a critical component of QSRR development.
A number of procedures have been established to determine the
quality of QSRR models. Therefore, a leave-one-out cross-validation
(LOO-CV), Y-randomization, and external validation (EV) proce-
dures through an odd–even number and division of the entire data
set into training and test sets are used to validate the predictive
ability and check the statistical significance of the developed 18
QSRR models.

3.2.1. Cross-validation
The robustness of the QSRR models can be tested by cross-

validation procedures. These procedures eliminate one or several
data sets (i.e. compounds) from the training set, derive a quanti-
tative model from the remaining objects, and predict the relative
retention time for the one or several objects which were not
included in the derivation of the model [61,62]. The cross-validated
squared correlation coefficient, R2

CV, and the standard deviation
of the predictions, SPRESS, or root mean square error in cross-
validation, RMSECV, are calculated from the predictive residual sum
of squares, PRESS =

∑
(ypred − yobs)2, in the same manner as R2

and RMSE values are calculated from the unexplained variance∑
(ycal − yobs)2, to describe the quality of fit of the models. The

formula used to calculate the R2
CV and RMSECV, is given below:

R2
CV = 1 −

∑N
i=1(ypred,i − yobs,i)

2

∑N 2
= 1 − PRESS∑N 2

(12)

i=1(yobs,i − ȳobs) i=1(yobs,i − ȳobs)

RMSECV =

√∑N
i=1(ypred,i − yobs,i)

2

N
(13)

onization ranges in eV/mol: red, more than 13.0502; yellow, between 13.0502 and
d B3LYP/6-31G* electrostatic potential molecular surface of 188biph. Electrostatic
94; green, between 3.0794 and −5.6769; blue, more negative than −5.6769. (For

 web version of the article.)
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here N is the number of training patters, yobs,i and ypred,i are the
xperimental, and predicted RRTs of the left-out PCB i, respectively
nd ȳobs is the average experimental RRT of left-in PCBs different
rom i. In the leave-one-out procedure, only one object is eliminated
t a time and the process is repeated until all objects have been
liminated once and only once. For larger data sets, the elimination
f several objects at a time, randomly or in a systematic manner, is
ecommended. Throughout this investigation, only leave-one-out
ross-validation was performed to derive a measure of the internal
redictivity of the models, within the training set. Values of R2

CV
an range from 1 to <0. A value of one indicates a perfect predic-
ion, and a value of 0 means that the QSRR derived has no modeling
ower. Negative values arise from a situation where the derived
SRR is a poorer description of data than no model at all. The R2

CV
alues can be considered as a measure of the predictive power of

 model: whereas R2 can always be increased artificially by adding
ore parameters, R2

CV decreases if a model is over parameterized
63], and is therefore a more meaningful summary statistic for pre-
ictive models. The correlation coefficients (R2

CV) and RMSECV for
ach subset are presented in Table 1. The cross-validation results
how that the R2

CV are higher than 0.8665 and RMSECV lower than
.0499 for all GC stationary phases, respectively. Furthermore, in
ll cases, the cross-validated R2

CV values are very close to the cor-
esponding R2 values and the cross-validated RMSECV values are
nly slightly larger than the corresponding RMSE values. Clearly,
he cross-validation demonstrates the final models to be statisti-
ally significant and this considered as an ultimate proof for the
igh predictive power of QSRR models [58].

.2.2. Y-randomization test
The Y-randomization of response is another important valida-

ion approach that is widely used to establish model robustness
64]. As a much more reliable criterion for the risk of chance corre-
ations, the affinity values of the PCBs were re-ordered in a random

anner (y scrambling), to determine the percentage of chance cor-
elations that are as good as or even better than the best correlations
ound for the y values in their correct order; 100 different ran-
omization runs were performed routinely, and the best models
ere individually derived for each randomization by systematic

earch, including up to three columns of the N × N matrices in the

egression models. In some cases, even 1000 randomizations were
erformed to prove that 100 randomizations give representative
esults. If all QSRR models obtained in the Y-randomization test
ave relatively high Rmax and RCV,max, it implies that an acceptable

able 2
tatistical parameters of the over-fitting and predictive ability of the models.

St. ph. Odd samples 

RMSERS R2
RS RMSEHO R2

HO

S1 0.0332 0.9539 0.0332 0.9539
S4  0.0244 0.9677 0.0244 0.9677
S6  0.0278 0.9693 0.0279 0.9693
S8  0.0287 0.9662 0.0287 0.9662
S10  0.0141 0.9810 0.0142 0.9810
S11  0.0221 0.9750 0.0221 0.9750
S12  0.0244 0.9709 0.0244 0.9709
S13  0.0192 0.9742 0.0192 0.9742
S14  0.0318 0.9542 0.0318 0.9542
S15  0.0206 0.9724 0.0206 0.9724
S16  0.0163 0.971 0.0164 0.9710
S17  0.0236 0.9647 0.0237 0.9647
S20  0.0153 0.9760 0.0154 0.9760
S21  0.0149 0.9733 0.0149 0.9733
S22  0.0209 0.9673 0.0209 0.9673
S24 0.0363 0.9514 0.0364 0.9514
S26 0.0224 0.9378 0.0224 0.9378
S27  0.0514 0.8632 0.0515 0.8632
ogr. A 1233 (2012) 116– 125 121

QSRR model cannot be obtained for the given data set by current
modeling method. No attempt was made to eliminate y-scrambled
data sets with (fortuitous) high correlations between the real, orig-
inal y values and the randomized y values. The results are shown in
last two  column in Table 1. Very low level of Rmax (in the interval
of 0.0248 for S26 and 0.0783 for S1) and RCV,max (in the interval
of 0.0062 for S14 and 0.0599 for S1) indicates good results in our
original models and is not due to a chance correlation or struc-
tural dependency of the training set for each stationary phase of
GC column [31].

3.2.3. Odd–even external validation
To validate and develop a believable QSRR model, it is not

enough to build a model for the whole data set. Consequently, the
209 (208 for system 15) data set for all stationary phases were
sorted in the ascending order of RRT values and then divided into
two  sets namely “odd set” and “even set” RRTs [65,66]. This way
of splitting ensures that the distribution of RRT values of the two
subsets were very similar. The QSRR models were fitted to the odd
set and even set samples separately and the resulted fitness was
assessed by applying QSRR models to both samples. To compare
the estimation abilities of the models, two  statistical parameters
namely root mean square error (RMSE) and R2, were calculated.
The same data set (i.e. ‘calibration set’) that was already used to
fit the models was  employed to determine resubstitution parame-
ters, i.e. RMSERS and R2

RS, also to determine holdout parameters, i.e.
RMSEHO and R2

HO for the other data set, which was  not involved in
the fitting. The resubstitution statistical parameters of the samples
base their predictions on the regression fitted to those samples and
this is while the holdout statistical parameters base their predic-
tions on the regression fitted to the other samples. The plots of RRTs
estimated by odd- and even-set QSRR models (holdout prediction)
versus the RRTs observed experimentally are given in Fig. 4, also
Table 2 summarizes these statistical parameters achieved by this
approach. As can be seen, in the odd and even-set samples, the
resubstitution and holdout RMSE are very similar, indicating that
the same sample and other sample predictions are equally precise
for all stationary phases [37,38].

3.2.4. Selecting training and test sets

We should emphasize that all three cross-validation, Y-

randomization and odd–even external validation must be made a
mandatory part of model development. This goal can be completed
by a division of an experimental RRT data set into the training and

Even samples

RMSERS R2
RS RMSEHO R2

HO

 0.0274 0.9662 0.0274 0.9662
 0.0196 0.9779 0.0197 0.9779
 0.0228 0.9783 0.0228 0.9783
 0.0235 0.9760 0.0235 0.9760

 0.0129 0.9832 0.0130 0.9832
 0.0184 0.9816 0.0184 0.9816
 0.0209 0.9772 0.0210 0.9772

 0.0173 0.9778 0.0173 0.9778
 0.0272 0.9641 0.0273 0.9641
 0.0209 0.9722 0.0209 0.9722

 0.0166 0.9681 0.0167 0.9681
 0.0199 0.9733 0.0199 0.9733

 0.0138 0.9794 0.0138 0.9794
 0.0145 0.9732 0.0145 0.9732
 0.0183 0.9734 0.0183 0.9734
 0.0308 0.9628 0.0309 0.9628
 0.0203 0.9463 0.0203 0.9463
 0.0475 0.8755 0.0475 0.8755



122 R. Ghavami, B. Sepehri / J. Chromatogr. A 1233 (2012) 116– 125

Fig. 4. Plots of the RRTs estimated for the odd set (�, A) and even set (©,  B) samples by holdout model versus that observed RRTs experimentally for all stationary phases of
209  PCBs.
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Fig. 5. Plots of the RRTs estimated by the QSPR models in Table 3 versus that observed for 126 training set PCBs (�) and 83 (system 15 82) testing set ones (©) for all stationary
phases.
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Table 3
QSRR models and statistical parameters of GC-RRT values versus (52 + 180) for the training (n = 126) and testing sites of PCB congeners on eighteen GC capillary columns.

St. ph. Training set Testing set

Univariate models RMSE REP F R2 R2
CV RMSECV RMSE REP R2

S1 RRT = −22.9159(±0.4319) + 2.0771(±0.0384) Is 0.0310 6.8375 2928.0 0.9594 0.9569 0.0320 0.0296 6.3730 0.9625

S4  RRT = −20.3907(±0.3123) + 1.8531(±0.0278) Is 0.0224 4.8909 4457.3 0.9729 0.9718 0.0229 0.0217 4.6240 0.9732

S6 RRT  = −23.9089(±0.3630) + 2.1651(±0.0323) Is 0.0261 5.7834 4504.7 0.9732 0.9720 0.0267 0.0359 7.7316 0.9755

S8  RRT = −23.4171(±0.3732) + 2.1215(±0.0332) Is 0.02689 5.9342 4090.8 0.9706 0.9693 0.0274 0.0253 5.4470 0.9726

S10 RRT  = −15.4247(±0.1801) + 1.4160(±0.0160) Is 0.0129 2.5551 7827.5 0.9844 0.9839 0.0131 0.0145 2.8129 0.9781

S11  RRT = −21.0793(±0.2812) + 1.9145(±0.0250) Is 0.0202 4.3852 5868.1 0.9793 0.9784 0.0206 0.0207 4.3915 0.9771

S12 RRT  = −21.5370(±0.3117) + 1.9552(±0.0277) Is 0.0224 4.8580 4982.4 0.9757 0.9747 0.0229 0.0235 4.9751 0.9718

S13  RRT = −18.0208(±0.2465) + 1.6433(±0.0219) Is 0.0177 3.7817 5626.3 0.9784 0.9777 0.0181 0.0193 4.0410 0.9723

S14  RRT = −22.1330(±0.4113) + 2.0081(±0.0366) Is 0.0296 6.4250 3018.1 0.9605 0.9586 0.0303 0.0299 6.3613 0.9579

S15  RRT = −19.0372(±0.2808) + 1.7337(±0.0250) Is 0.0202 4.3081 4824.9 0.9749 0.9741 0.0205 0.0217 4.5488 0.9691

S16  RRT = −14.3848(±0.2232) + 1.3209(±0.0198) Is 0.0160 3.3641 4435.2 0.9728 0.9720 0.0163 0.0174 3.5945 0.9639

S17  RRT = −18.7949(±0.3013) + 1.7118(±0.0268) Is 0.0216 4.6608 4086.8 0.9706 0.9693 0.0221 0.0223 4.7073 0.9672

S20 RRT  = −14.8588(±0.1947) + 1.3655(±0.0173) Is 0.0140 2.7712 6229.7 0.9805 0.9799 0.0142 0.0155 3.0124 0.9728

S21  RRT = −13.6561(±0.1922) + 1.2560(±0.0171) Is 0.0138 2.9049 5406.1 0.9776 0.9769 0.0140 0.0160 3.1396 0.9661

S22  RRT = −17.3065(±0.2650) + 1.5797(±0.0236) Is 0.0191 4.0789 4497.0 0.9732 0.9723 0.0194 0.0205 4.2902 0.9656

S24  RRT = −24.5666(±0.4836) + 2.2233(±0.0430) Is 0.0348 7.7595 2675.3 0.9557 0.9537 0.0355 0.0320 6.9229 0.9600

S26 RRT  = −13.2018(±0.2874) + 1.2156(±0.0255) Is 0.0207 4.3480 2264.2 0.9481 0.9464 0.0210 0.0222 4.6023 0.9314
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S27  RRT = −19.7384(±0.6604) + 1.7951(±0.0587) Is 0.0475 10.356

or system 15 n = 125.

est sets, which are used for model development and validation,
espectively. In this investigation, for further testing the predictive
bility of the models for the external compounds without the mod-
ls, part of the congeners are picked up from 209 (208 for system
5) PCBs to construct a training set which is used to develop a pre-
iction model and then predict the values of RRTs in the remaining
ongeners. How to pick up the compounds in the training set is
ery important for developing of the predictive QSRR models. In
his case, before each training run, all data sets were split randomly
nto two separate sub-matrices: the training set matrix and exter-
al testing set matrix. Out of 126 congeners (60.3%) were used for
he training set and 83 congeners (82 for system 15) (39.7%) were
sed as external validation. The PCBs constituting the training and
esting sets are clearly presented in Table S1.  Moreover, the same
ivisions were repeated with corresponding RRTs values. The test
xamples are marked as bold font and training set was also used to
btain the best fit equation of simple linear regression with aver-

ge of average local ionization energy, Is descriptor. Furthermore,
he testing set was used to monitor overfitting the models. The
esulted models for training set congeners were the same as those
btained for the entire set of all PCBs in each subset subject to use
escriptors of all congener’s models supporting sufficient ability for
he prediction set of 83 PCBs. The resulting regression equations of
he training set for individual HRGC column stationary phases are
ndexed in Table 3, and the results are plotted in Fig. 5. Statistical
arameters for the best-fitted models are also presented in Table 3.
he correlation coefficients (R2) of the obtained models are >0.95
or all the stationary phases except for system 27 (0.8830), and the
ighest one is 0.9844 for system 10. The root mean square error
RMSE) and relative error prediction (REP) of estimation ranged
rom 0.0129, 2.5551 of system 10 to 0.0348, 7.7595 of system 24
except for system 27), respectively, also the F statistic values are
2264.2 (except system 27). The LOO-CV method was used to exam-
ne the stability of QSRR models, and the values of R2

CV and RMSECV
or the models were above 0.9464 and in the range of 0.0131 and

.0355 (except for system 27).

The predicted RRTs versus the observed RRTs of the 126 PCB
raining sets are plotted in Fig. 5 (diamond). As shown in Table 3 and
ig. 5, the QSRR statistical results exhibit good estimation capacity
935.4 0.8830 0.8789 0.0483 0.0522 11.2029 0.8482

and stability for internal training set PCB samples to individual sta-
tionary phases. High predictive ability of QSRR models for external
examples is another criterion of a good QSRR model. The predicted
RRTs of 83 (82 for system 15) PCBs in the external testing set by the
models in Table 3 are also demonstrated in Fig. 5 (circle) versus the
observed RRTs of 18 GC stationary phases. For all 18 HRGC station-
ary phases, the regression of the observed and predicted RRTs had
a high agreement with the diagonal of each chart. The predicted
correlation coefficients (R2) over 0.9314 with the exception of
system 27 (R2 = 0.8482), the root mean square error (RMSE) and rel-
ative error prediction (REP) below 0.0359 and 7.7316, respectively,
except for system 27 (RMSE = 0.0522, REP = 11.2029) demonstrated
an excellent predictive power of the obtained QSRR models.

4. Conclusions

Based on the GIPF family descriptors derived from properties of
the electrostatic potentials on their molecular surfaces computed at
the B3LYP/6-31G* level, QSRR models were built to study the HRGC-
RRT behaviors of all 209 PCBs congeners on 18 capillary stationary
phases (S1, S4, S6, S8, S10, S11, S12, S13, S14, S15, S16, S17, S20,
S21, S22, S24, S26, S27), by simple linear equations. As has just been
discussed, we  have found good relationships between HRGC-RRT
values and our computed the average of average molecular surface

local ionization energy (Is) value, for each stationary phases taken

separately. The presence of Is term in all QSRR models may  indicate
the charge-transfer interactions effect is responsible for separation
in all of these 18 capillary stationary phases. The validation and
predictive ability of the models were examined by three methods
of leave-one-out cross-validation, Y-randomization, and external
validation. The methods indicated that the resulted simple linear
equation QSRR models have high prediction ability and low over-
fitting. The results demonstrate system 10 has best performance
for separation of PCBs because have maximum R2 and minimum

RMSE although these statistical parameters have no significance
different with these statistics parameter for other stationary phase
(except for system 27). System 27 has the weakest performance for
PCBs separation, although complete separation of all PCBs are not
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ppendix A. Supplementary data

Supplementary data associated with this article can be found, in
he online version, at doi:10.1016/j.chroma.2012.01.047.
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